化学所在可穿戴钙钛矿太阳能电源研究中取得进

来源:http://www.020tL.com 作者:云顶集团简介 人气:141 发布时间:2019-09-21
摘要:近日,中国科学院大连化学物理研究所薄膜硅太阳电池研究组研究员刘生忠联合陕西师范大学研究员杨栋受邀在《德国应用化学》( Angew.Chem. Int.Ed. )上发表综述文章,该文章总结和探

近日,中国科学院大连化学物理研究所薄膜硅太阳电池研究组研究员刘生忠联合陕西师范大学研究员杨栋受邀在《德国应用化学》(Angew. Chem. Int. Ed.)上发表综述文章,该文章总结和探讨了柔性钙钛矿太阳能电池的最新进展、应用成本,以及潜在的机遇与挑战。

在科技部、国家自然科学基金委和中国科学院的大力支持下,中科院化学研究所绿色印刷重点实验室研究员宋延林课题组科研人员近年来在印刷制备钙钛矿晶体及电池器件方面开展了研究。他们在印刷制备钙钛矿材料方面取得进展,实现了相比传统工艺更环保的喷墨打印制备(J. Mater. Chem. A 2015, 3, 9092-9097);通过控制打印过程实现了钙钛矿单晶材料的可控生长(Sci. Adv., 2018, 4, eaat2390;Small, 2017, 13, 1603217)。基于电池器件图案化设计也取得系列进展(Adv. Mater. 2018, 30, 1804454;Adv. Energy Mater., 2018, 8, 1702960.;Nano Energy, 2018, 46: 203-211;Nano Energy, 2018, 51: 556-562),并通过纳米组装-印刷方式制备蜂巢状纳米支架作为力学缓冲层和光学谐振腔,从而显著提高了柔性钙钛矿太阳能电池的光电转换效率和力学稳定性(Adv. Mater. 2017, 29, 1703236)。

最近,该团队运用二甲硫醚作为添加剂,通过控制钙钛矿吸光层的结晶过程,得到晶粒尺寸较大、结晶性较好、以及缺陷态密度较低的钙钛矿薄膜,将柔性钙钛矿太阳能电池的效率提高到18.40%,同时将大面积柔性钙钛矿太阳能电池的效率提升到13.35%。另外,利用添加剂制备的钙钛矿吸光层稳定性得到显著增加,在35%的湿度下放置60天,电池的效率仍能保持86%的原有效率,而无添加剂制备的钙钛矿太阳能电池效率相同条件下仅可保持原有效率的50%。此项研究成果是目前柔性钙钛矿电池的最高效率,为柔性钙钛矿太阳能电池的发展奠定了实验和理论基础。

图片 1

该综述介绍了目前低温钙钛矿薄膜的多种制备方法,以及其各自的优缺点;阐述了低温界面层(包括电子和空穴传输层)材料在柔性钙钛矿太阳能电池中的应用;总结了不同柔性电极在柔性钙钛矿太阳能电池发展过程中的重要历程;分析了柔性钙钛矿太阳能电池的环境和机械稳定性,以及如何利用柔性封装技术提升其环境稳定性。随后,文章展望了柔性钙钛矿太阳能电池在可穿戴等便携式电子器件中的应用,并且估算了柔性钙钛矿太阳能电池实现大规模真空卷到卷的制备后成本。最后,该综述预测并强调了柔性钙钛矿太阳能电池在未来实际生产中面临的机遇和挑战。

图片 2

该研究工作得到国家重点研究与发展计划、中央高校基础研究基金、国家自然科学基金项目、111项目、国家大学科研基金、长江学者创新团队、国家“千人计划”项目的资助。

金属卤化物钙钛矿作为一种直接带隙半导体材料,具有结构可设计性、带隙可调、禁带宽度合适、载流子迁移率高及成本低廉等优点,是第三代薄膜太阳能电池的代表性材料。然而三维钙钛矿对水氧的敏感性,导致器件在自然工作状态下效率急剧衰减,严重阻碍了钙钛矿太阳能电池的商业化进程。二维钙钛矿作为三维钙钛矿的延伸材料,因其疏水性和对光照的不敏感性,稳定性大为提高。由于二维材料结构的特殊性,电子或空穴受量子尺寸效应限制,其寿命和迁移率远低于三维结构,因而其器件光电转化效率明显低于三维钙钛矿。这种稳定性与高效率之间的矛盾成为实际应用的一个难题。

图片 3

可穿戴电子是未来电子元器件研究发展的重要方向,其中电源是核心的组成部分。电源的获取方式和效率影响着未来可穿戴电子的设计与功能。目前,可穿戴电子设备的电源主要为锂离子电池,其固有特性一定程度上限制了可穿戴电子的户外使用性、安全性和人体皮肤贴合性。

大连化物所等柔性钙钛矿太阳能电池研究取得新进展

模块化钙钛矿太阳能电池及稳定性

大连化物所发表柔性钙钛矿太阳能电池综述文章

在上述研究的基础上,他们受自然界中珍珠质结晶机理及结构的启发,引入两亲性弹性结晶基质到钙钛矿前驱体溶液中,以解决钙钛矿晶体薄膜的脆性问题。研究表明,通过调控掺杂量可实现钙钛矿晶体的垂直并联结构生长,消除了横向晶界对于器件效率的影响。同时,该结晶方式形成的弹性“砖泥”结构在力学稳定性上实现突破,首次实现平面薄膜的可拉伸功能。通过这种仿生结晶和结构设计,所制备1cm2的柔性钙钛矿太阳能电池光电转换效率突破15%。56cm2大面积电池组件第三方认证效率高达7.9%。该太阳能电池组件具有光电转换效率高、性能稳定、可穿戴贴合性强等优势,有望应用于可穿戴电子器件。该研究成果发表在近期出版的《能源和环境科学》上(Energy Environ. Sci., 2018, DOI: 10.1039/C8EE01799A)。

图片 4

在国家自然科学基金委、科技部和中国科学院的支持下,中科院化学研究所绿色印刷重点实验室研究员宋延林课题组科研人员利用绿色纳米印刷技术,在钙钛矿单晶的精细图案化组装(Sci. Adv. 2018, 4, eaat2390)、印刷柔性太阳能电池(Adv. Mater. 2017, 29, 1703236)和钙钛矿可穿戴器件(Energy Environ. Sci. DOI: 10.1039/c8ee01799a)方面开展了一系列研究。

该工作得到国家重点研究与发展计划、中央高校基础研究基金、国家自然科学基金项目、111项目、国家大学科研基金、长江学者创新团队的支持。

近年来,金属有机杂化钙钛矿太阳能电池以其优越的光电转换性能受到广泛关注,为其作为电源应用于可穿戴电子设备提供了可能。然而到目前为止,柔性钙钛矿太阳能电池尚未能实际应用于可穿戴电子设备中。其重要原因之一是钙钛矿材料本身的易脆性,导致大面积电池效率重现性差和无法适合复杂的人体动作。

近日,中国科学院大连化学物理研究所薄膜硅太阳电池研究组研究员刘生忠和陕西师范大学研究员杨栋、博士冯江山等在柔性钙钛矿太阳能电池研究方面取得新进展。相关结果发表在《先进材料》(Advanced Materials)上。

最近,该实验室的研究人员与澳门大学物理学院合作,成功将纯相的二维钙钛矿引入到三维钙钛矿体系中,克服了载流子传输过程受量子尺寸效应的限制,制备出了高度趋向性的2D-3D钙钛矿横向抑制结薄膜,并利用印刷技术制备出高效率、高稳定性的模块化钙钛矿太阳能电池。如下图所示,他们选择具有长链双胺配体的二维钙钛矿,一方面抑制了多种二维相的形成,保证二维钙钛矿的超强疏水性。另一方面,二维钙钛矿中的胺分子可以与三维钙钛矿中的有机阳离子发生配位作用,可以使纯相二维钙钛矿镶嵌在三维钙钛矿晶界处,抑制载流子自晶界处的非辐射复合,阻挡水和氧在从晶界处腐蚀薄膜,得到了光电转换效率超过21%的钙钛矿太阳能电池。通过印刷技术制备出的模块化组件,在自然条件下,经过3000小时的衰减测试,其光电转换效率仍然保持在初始值的90%以上。500小时的光照测试,模块化组件效率衰减不足10%。通过这种二维-三维钙钛矿结构设计,同时实现了超高效率和超稳定性的模块化钙钛矿太阳能电池,对推动钙钛矿太阳能电池的实际应用具有重要意义。该研究成果近日发表在《先进材料》(Adv. Mater. DOI:10.1002/adma.201805323)上。

随着科技的快速发展,人们对便携式电子设备、电子显示器,以及可穿戴电子产品等柔性电子器件的需求越来越多。柔性太阳能电池由于具有质量轻,易于运输、安装等优势成为未来便携式电子产品的最佳选择之一。近年来发展起来的新型钙钛矿太阳能电池具有结构简单、可低温加工、效率高,以及价格低廉等优点,非常适用于制备柔性太阳能电池。因此,当前国内外都加快了基于钙钛矿材料的柔性太阳能电池的研究。其研究主要集中在如何提升柔性钙钛矿太阳能电池的效率、加大有效面积、降低成本、实现低温制备,以及大规模生产等问题上。该团队近年来在钙钛矿太阳能电池领域取得了一系列进展,多次创造柔性及刚性平面型钙钛矿太阳能电池的最高效率,目前仍是柔性和刚性平面型钙钛矿太阳能电池最高效率的保持者(Energy Environ. Sci., Adv. Mater.Energy Environ. Sci. Adv. Mater.Nat. Commun.)。

图:仿生结晶和弹性“砖泥”结构用于制备可穿戴太阳能电源

柔性太阳能电池由于具有质量轻、便携带、易于运输、安装简单等优点备受关注。高性能柔性钙钛矿太阳能电池的关键部分是低温界面层和高质量钙钛矿吸光层。该团队前期通过开发低温界面层,在柔性钙钛矿电池中取得了一系列成果:2015年,利用室温磁控溅射法沉积氧化钛界面层,制备的柔性钙钛矿电池效率达到15.07%(Energy Environ. Sci.);2016年,首次将离子液体作为界面层应用到柔性钙钛矿电池中,将柔性钙钛矿电池效率进一步提升到16.09%(Adv. Mater.)。

本文由云顶集团网站发布于云顶集团简介,转载请注明出处:化学所在可穿戴钙钛矿太阳能电源研究中取得进

关键词:

上一篇:没有了

下一篇:没有了

最火资讯