云顶集团网站理化所发表纳米通道浸润性与应用

来源:http://www.020tL.com 作者:云顶集团官方网站 人气:83 发布时间:2019-09-21
摘要:纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分

纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润性的关键因素,当通道直径小于10纳米时,通道内液体由于限域效应出现非连续流体行为;当通道直径大于10 纳米时,通道为液体提供更大的受限空间,适用于液体传输和纳米材料制备。经过二十多年的发展,纳米通道浸润性研究仍面临许多挑战,其中最大的挑战是探索纳米通道中非连续流体的物理来源。随着纳米材料表征技术的进步,将为理解纳米限域流体浸润性的机理提供有力的实验证据。同时,分子动力学等理论模拟也将从理论上对实验结果提供支持。

纳米通道浸润性研究对于解决界面化学和流体力学中遗留的众多挑战性问题至关重要,并广泛应用于物质传输、纳米限域催化、限域化学反应、纳米材料制备、能量储存和转化、液体分离等领域。纳米通道的尺寸是影响液体浸润性的关键因素,当通道直径小于10纳米时,通道内液体由于限域效应出现非连续流体行为;当通道直径大于10纳米时,通道为液体提供更大的受限空间,适用于液体传输和纳米材料制备。经过二十多年的发展,纳米通道浸润性研究仍面临许多挑战,其中最大的挑战是探索纳米通道中非连续流体的物理来源。随着纳米材料表征技术的进步,将为理解纳米限域流体浸润性的机理提供有力的实验证据。同时,分子动力学等理论模拟也将从理论上对实验结果提供支持。

生物离子通道在物质转移、能量转换和信号传输等多种生理过程中起着重要作用。信号可以基于生物离子通道在视觉、嗅觉、听觉和触觉等过程中经神经传递到大脑。这些功能高度依赖于具有选择性的生物离子通道的高速离子传输(每个通道每秒107个离子)。这种超快物质传输源于离子通道的特殊性质,例如,小尺寸、独特的结构和表面电荷分布等,从而导致离子和分子以单链形式进行超快传输。从经典热力学角度看,具有化学选择性的纳米通道的物质传输应该是非常缓慢的。然而,在生命体系中,离子和分子的快速传输表现出量子化的超快流体状态。例如,NaK通道每次只能容纳一个水合Na+离子;K通道含有两个相距约7.5埃的K+离子,中间有一个水分子;每个Ca离子通道也同时结合两个Ca2+离子。

传统的Hodgkin-Huxley模型认为,神经信号传输是通过动作电位沿着神经元轴突进行传播,动作电位是由K+/Na+在Na/K泵的离子扩散产生的,而其余大部分Na/K泵是静止的。这种离子流体是熵驱动的无序流体,离子扩散过程需要消耗大量能量,类似于多米诺骨牌效应,传播速度相对较慢,不适用于解释神经信号的超快传输。

近日,中国科学院院士、中国科学院理化技术研究所研究员江雷、理化所副研究员张锡奇在《先进材料》(Advanced Materials)上,发表了题为Wettability and Applications of Nanochannels 的综述(Adv. Mater. 2018, 1804508)。文章首先介绍了江雷提出的“量子限域超流体”概念,并用于解释纳米通道中超快物质传输和非连续流体行为。随后,文章分别在理论和实验上总结了一维、二维和三维纳米通道浸润性,从分子模拟、液体浸润性、外部刺激调控浸润性、熔体和液体浸润限域策略、液体传输和限域纳米材料制备等方面对纳米通道浸润性与应用进行论述。最后,文章在展望中指出,“量子限域超流体”概念将为理解纳米通道中非连续流体行为提供新思路,并将引发一场量子限域化学的革命。

云顶集团网站 1

近日,中国科学院院士、中国科学院理化技术研究所研究员江雷将生物孔道中离子和分子以单链的量子方式快速传输定义为“量子限域超流体”,并指出限域孔道内离子和分子的有序超流为“量子隧穿流体效应”,该“隧穿距离”与量子限域超流体的周期相一致。结合该课题组近期研究成果(Adv. Mater., 2016, 28, 3345-3350;Angew. Chem. Int. Ed., 2017, 129, 5814-5818),他们发现仿生体系也存在量子限域超流现象,例如人工离子通道和水通道内物质的快速传输(每秒~106个离子)。最后,他们在展望中指出,通过把量子限域超流体概念引入化学领域,将引发出精准化学合成,即量子有机、无机、高分子反应等。而引入到生物学领域,将产生量子超流的生物化学、生物物理、生物信息学以及生物医学等。在此基础上,也将产生其他的新科学和新技术。

近日,中国科学院理化技术研究所仿生智能界面科学中心在Nano Research 发表了题为Quantum-confined ion superfluid in nerve signal transmission 的文章,提出了基于量子限域离子超流体的神经信号传输过程,认为QISF是焓驱动的限域有序流体,K+/Na+同时在所有Na/K泵通道进行快速传输,离子传输过程没有能量损耗,并产生沿着神经元轴突超快传播的QISF波,作为神经信号传输的信息媒介。QISF波和动作电位在传播过程中不相干。同时发现K+和Na+的德布罗意波长比直径小一个数量级,但原则上离子的德布罗意波长应远大于离子直径,表明德布罗意波长公式不适用于描述离子在生物通道中的量子效应。

相关工作得到国家重点研发计划、国家自然科学基金委和高等学校学科创新引智计划的大力支持。

文章发表在《中国科学-材料》(SCIENCE CHINA Materials)上,论文标题为Quantum-confined superfluidics: From nature to artificial

QISF过程的提出,不仅为神经和大脑中超快信号传输的合理解释提供了新的视角,而且对离子、分子和粒子的物质波理论提出了挑战。

论文链接

文章链接

论文链接

云顶集团网站 2

云顶集团网站 3

云顶集团网站 4

纳米通道浸润性与应用

图1 生物离子通道和人工离子通道均存在超快离子和水传输

神经信号传输中的QISF波与动作电位

云顶集团网站 5

图2 人工一维纳米通道中的超快水传输与“量子隧穿流体效应”概念

云顶集团网站 6

图3 二维表面液体的超铺展和二维界面的超快水传输

云顶集团网站 7

图4 引入QSF概念到化学和生物学领域将产生QSF化学和QSF生物学

本文由云顶集团网站发布于云顶集团官方网站,转载请注明出处:云顶集团网站理化所发表纳米通道浸润性与应用

关键词:

上一篇:没有了

下一篇:没有了

最火资讯