化学所在微纳米电路制备方面取得系列进展,化

来源:http://www.020tL.com 作者:新闻中心 人气:82 发布时间:2019-09-22
摘要:随着信息技术的发展,传统集成电路的集成度和生产工艺均面临巨大挑战。近年来,三维微纳米结构的组装研究备受关注。其中,三维结构对立体电路及光电器件的制备至关重要。然而

随着信息技术的发展,传统集成电路的集成度和生产工艺均面临巨大挑战。近年来,三维微纳米结构的组装研究备受关注。其中,三维结构对立体电路及光电器件的制备至关重要。然而,传统的组装方法很难实现自支撑的三维悬空结构,且所适用的材料十分有限。因此,研究简便普适的三维微纳结构制备方法对新型光电器件的发展具有重要意义。

随着信息技术的发展,传统集成电路的集成度和生产工艺均面临巨大挑战。近年来,三维微纳米结构的组装研究备受关注。其中,三维结构对立体电路及光电器件的制备至关重要。然而,传统的组装方法很难实现自支撑的三维悬空结构,且所适用的材料十分有限。因此,研究简便普适的三维微纳结构制备方法对新型光电器件的发展具有重要意义。

随着信息技术的发展,传统集成电路的集成度和生产工艺都面临巨大挑战。近年来,三维微纳米结构的组装研究备受关注。其中,三维结构对立体电路及光电器件的制备至关重要。然而,传统的组装方法很难实现自支撑的三维悬空结构,且所适用的材料十分有限。因此,研究简便普适的三维微纳结构制备方法对新型光电器件的发展具有重要意义。

功能纳米材料作为构建具有精细微纳结构的功能器件的基本材料单元,在光、电、磁以及生物等领域的器件制备方面具有重大的意义,因而使得纳米材料的精确组装以及图案化技术成为目前纳米科学技术领域的一大研究热点。

中国科学院化学研究所绿色印刷院重点实验室研究员宋延林课题组利用绿色纳米印刷技术,在纳米材料的精细图案化组装、印刷柔性传感器、光学器件、透明导电膜和最优微纳串线应用方面开展了一系列广泛而深入的研究。

云顶集团网站 1

云顶集团网站 ,在国家自然科学基金委、科技部和中国科学院的大力支持下,化学所绿色印刷院重点实验室的科研人员利用绿色纳米印刷技术,在纳米材料的精细图案化组装(Adv. Mater.**2014, 26, 6950-6958)、印刷柔性传感器(Adv. Mater.2016,28,1369-1374)、光学器件(Angew.Chem. Int. Ed.2016, 55, 6911-6914)、透明导电膜(Nat. Commun. 2017, 8, 14110)和最优微纳串线(Adv. Mater. 2017**,29,1605223)应用方面开展了一系列广泛而深入的研究。

在国家自然科学基金委、科技部和中国科学院的大力支持下,中国科学院化学研究所绿色印刷重点实验室研究员宋延林课题组的科研人员利用绿色纳米打印与印刷技术,在功能纳米材料的可控组装、精细图案化技术以及器件应用方面开展了一系列广泛而深入的研究(Adv. Mater. 2014, 26, 6950-6958)。他们通过调控墨水、基材等打印条件,成功制备了一系列特殊结构和图案:利用“咖啡环”现象制备线宽可达5 μm的金属纳米粒子图案(Adv. Mater. 2013, 25, 6714-6718);利用墨水的三相线滑移现象制备了具有特殊三维结构的图案(Adv. Opt. Mater. 2013, 2, 34-38; Adv. Funct. Mater. 2015, 25, 2237-2242);通过喷墨打印磁性墨水制备了特殊三维柱状结构(Small 2015, 11, 1900-1904);利用软基材喷墨打印制备了微坑及凹槽结构(Adv. Funct. Mater. 2015, 25, 3286-3294)。在应用方面,他们利用这些打印、印刷制备的结构与图案实现了等离子光波传输(Adv. Mater. 2014, 26, 2501-2507);高灵敏检测(Angew. Chem. Int. Ed. 2014, 53, 5791-5795; Nanoscale 2015, 7, 421-425);量子点图案(Small 2015, 11, 1649-1654);生物细胞分离(ACS Appl. Mat. Interfaces 2015, 7, 9060-9065)等应用。

在上述研究的基础上,研究人员以液滴操控微纳结构立体成型为研究出发点,利用模板诱导液滴在三维空间内自发收缩,实现了单一或多材料的三维微纳结构的快速组装成型。液体自发收缩成型的过程遵循热力学最稳定状态,在连接方式上符合数学的最优连接,使液体中的纳米材料通过一步组装形成最优化结构。基于银纳米颗粒的立体微纳电路显示了在立体集成电路的潜在应用;基于两种量子点共组装的三维微纳结构在间隔小于3μm时仍能实现良好的多色显示。这种通过液滴自发成型组装的三维微纳结构,为新型立体光电器件的发展提供了新思路。

图1.3D印刷多材料微纳结构

在上述研究的基础上,他们以液滴操控微纳结构立体成型为研究出发点,利用模板诱导液滴在三维空间内自发收缩,实现了单一或多材料的三维微纳结构的快速组装成型。液体自发收缩成型的过程遵循热力学最稳定状态,在连接方式上符合数学的最优连接,使液体中的纳米材料通过一步组装形成最优化结构。基于银纳米颗粒的立体微纳电路显示了在立体集成电路的潜在应用;基于两种量子点共组装的三维微纳结构在间隔小于3μm时仍能实现良好的多色显示。这种通过液滴自发成型组装的三维微纳结构为新型立体光电器件的发展提供了新的思路。该研究成果作为封面报道发表于近日的Adv. Mater. 2018,30, 1703963上。

在这些研究的基础上,他们通过喷墨打印技术构筑微米尺度的电极图案作为“模板”,控制纳米材料的组装过程成功制备了最高精度可达30 nm的图案,并实现了柔性电路的应用。这种新型的图案化技术非常简便地实现了功能纳米材料的微纳米精确图案化组装,在过程中完全避免了传统的光刻工艺,这种“全增材制造”的方法通过“先打印,再印刷”的方式,能够大面积制备纳米材料组装的精细图案和功能器件,是“绿色纳米印刷技术”在前沿科学领域实现的一大突破,对印刷技术的功能化和器件化发展有着重大的推动作用。该研究成果发表在近日出版的《先进材料》(Adv. Mater. 2015, 27, 3928-3933)上。

近日,相关研究成果作为封面报道发表在AdvancedMaterials上。研究工作得到了国家自然科学基金委、科技部和中科院的支持。

中国科学院化学研究所绿色印刷院重点实验室研究员宋延林课题组利用绿色纳米印刷技术,在纳米材料的精细图案化组装、印刷柔性传感器、光学器件、透明导电膜和最优微纳串线应用方面开展了一系列广泛而深入的研究。

云顶集团网站 2

云顶集团网站 3

论文链接

云顶集团网站 4

图13D印刷多材料微纳结构

图1 银纳米粒子的图案化组装

云顶集团网站 5

图2.微纳立体电路及多色显示器件

云顶集团网站 6

云顶集团网站 7

图1.3D印刷多材料微纳结构

在上述研究的基础上,研究人员以液滴操控微纳结构立体成型为研究出发点,利用模板诱导液滴在三维空间内自发收缩,实现了单一或多材料的三维微纳结构的快速组装成型。液体自发收缩成型的过程遵循热力学最稳定状态,在连接方式上符合数学的最优连接,使液体中的纳米材料通过一步组装形成最优化结构。基于银纳米颗粒的立体微纳电路显示了在立体集成电路的潜在应用;基于两种量子点共组装的三维微纳结构在间隔小于3μm时仍能实现良好的多色显示。这种通过液滴自发成型组装的三维微纳结构,为新型立体光电器件的发展提供了新思路。

图2 微纳立体电路及多色显示器件

图2 基于银纳米线组装制备的柔性微电路芯片

云顶集团网站 8

近日,相关研究成果作为封面报道发表在Advanced Materials上。研究工作得到了国家自然科学基金委、科技部和中科院的支持。​

绿色印刷院重点实验室

图2.微纳立体电路及多色显示器件

2018年2月5日

本文由云顶集团网站发布于新闻中心,转载请注明出处:化学所在微纳米电路制备方面取得系列进展,化

关键词:

上一篇:没有了

下一篇:没有了

最火资讯