男女之别是如何形成的,中科院成都生物所发现

来源:http://www.020tL.com 作者:新闻中心 人气:120 发布时间:2019-09-20
摘要:性染色体进化理论认为,基因的重组抑制引起性染色体的分化,其后Y或W将积累性别相关基因,同时丢失与性别发育无关的基因,导致异配的Y或W染色体走向退化,并最终发生形态上的改

性染色体进化理论认为,基因的重组抑制引起性染色体的分化,其后Y或W将积累性别相关基因,同时丢失与性别发育无关的基因,导致异配的Y或W染色体走向退化,并最终发生形态上的改变。反之,同配性别的X或Z染色体则因为重组而保持原来的形态。在自然种群中,X或Z染色体的形态改变十分罕见。

中科院成都生物所发现棘腹蛙X染色体重排

胚胎在母体中要经过漫长的10个月的分化发育才能来到人间。正常情况下,胚胎发育到8-10周时,男性胎儿出现睾丸并开始分泌雄激素,雄激素使胎儿的外生殖器官向男性方向发展变化;没有睾丸的胎儿,因缺乏雄激素作用,外生殖器自然而然地朝女性方向发展。

世界上现存的生物种类繁多,大至几十吨的巨鲸,小至仅有二、三百个核苷酸的类病毒,都有一种不同于非生物的特点——繁殖。物生其类;传种接代,这种一个物种只产生同一物种的后代,这些后代又都继承着上一代的各种基本特征的现象,就是遗传。正是因为遗传现象的存在,人类才能保持形态、生理和生化等特征的相对稳定。但是繁殖的结果还有一种可能,即各种生物所生的后代又不完全象亲代,子代各个体间也不完全一样,这种亲子代间的差异称为变异。

中国科学院成都生物研究所研究员曾晓茂团组成员夏云和原秀云,发现棘腹蛙中X染色体发生了易位重排,呈现出明显的形态变化。通过性别位点的染色体定位、染色体涂染FISH及性别标记克隆测序等技术求证,只有当易位发生在X染色体上时,后代的理论核型才与实际检出的核型多态相一致。在重排种群中,核型异形涉及正常的X染色体和易位的X染色体。基于雌雄两性性别连锁的单倍型分析结果表明,Y和正常的X染色体、Y和易位的X染色体、正常和易位的X染色体之间均存在重组抑制。异形染色体在雌性和雄性中均出现,X染色体以二态形式存在于种群中。在偶然的情形下,X染色体发生了结构改变,可能促进了重组抑制和性染色体分化。这种二态性染色体可能处于分化的初期阶段,对理解性染色体进化意义重大。

性染色体进化理论认为,基因的重组抑制引起性染色体的分化,其后Y或W将积累性别相关基因,同时丢失与性别发育无关的基因,导致异配的Y或W染色体走向退化,并最终发生形态上的改变。反之,同配性别的X或Z染色体则因为重组而保持原来的形态。在自然种群中,X或Z染色体的形态改变十分罕见。

胎儿出生的时候,外生殖器已经基本成形。青春期,外生殖器迅速地进一步生长发育。男孩出现变声、喉结和胡须;女孩则出现乳房发育、身体变得丰满及周期性的月经等第二性征,从而长成真正的男人和女人。

遗传使物种保持相对稳定;变异则是使物种的进化成为可能,其实质是在环境因素的作用下,机体在各种形态、生理等各方面获得了某些不是来自于亲代的一些新的特征;如果没有遗传现象,世界上的各个物种就不可能一代—代地连续下去;同样,若没有变异现象的存在,地球上的生命只能永远停留在最原始的类型,也不可能构成形形色色的生物界,更不可能有人类进化的历史。所以说遗传与变异的矛盾是生物发展和变化的主要矛盾,在生物进化过程中起决定作用。对于稳定品种的有机体,遗传是矛盾的主要方面,变异是次要方面,这样才可保持其特性一定的稳定和相对不变。但有时由于某种原因,变异会成为主要矛盾,遗传成为次要的,这时有机体的某些特征和特性就会发生改变,从而引起了生物的变化和发展。

研究结果近期以Sex chromosomal dimorphisms narrated by X-chromosome translocation in a spiny frog (Quasipaa boulengeri) 为题发表在国际动物学期刊Frontiers in Zoology上。

中国科学院成都生物研究所曾晓茂研究员团组成员夏云和原秀云博士,发现棘腹蛙中,X染色体发生了易位重排,呈现出明显的形态变化。通过性别位点的染色体定位、染色体涂染FISH及性别标记克隆测序等技术求证,只有当易位发生在X染色体上时,后代的理论核型才与实际检出的核型多态相一致。在重排种群中,核型异形涉及到正常的X染色体和易位的X染色体。基于雌雄两性性别连锁的单倍型分析结果表明,Y和正常的X染色体、Y和易位的X染色体、正常和易位的X染色体之间均存在重组抑制。异形染色体在雌性和雄性中均出现,X染色体以二态形式存在于种群中。在偶然的情形下,X染色体发生了结构改变,可能促进了重组抑制和性染色体分化。这种二态性染色体可能处于分化的初期阶段,对理解性染色体进化意义重大。

是什么决定了男性胎儿生成睾丸,而女性胎儿没有睾丸形成呢?这要从遗传物质——基因说起。 生物之所以能够代代相传、繁衍不息,主要是因为有遗传物质。这些遗传信息叫做“基因”,而基因存在于细胞的染色体之中。染色体决定个体的特性,隐含着胎儿变男变女的秘密。简单地讲,性染色体核型,决定了胎儿是否有睾丸发育。

一、遗传的物质基础

论文链接

研究结果近期以题为“Sex chromosomal dimorphisms narrated by X-chromosome translocation in a spiny frog (Quasipaa boulengeri)”发表在国际动物学期刊《Frontiers in Zoology》上。

人类每一个体细胞内均有46条染色体,其中23条来自父亲,另外23条来自母亲。也就是说,孩子从爸爸妈妈身上各得到50%的遗传物质。 在46条染色体中,只有2条起决定性别的作用,故被称为“性染色体”。男性的性染色体为XY, 女性为XX。胎儿从母亲那儿只能得到X染色体,从父亲那儿可以得到X染色体或者Y染色体。如果得到X染色体,那么胎儿染色体核型就是46,XX,在胚胎第8周的时候不会出现睾丸发育,将来发育成女性。如果从父亲那儿得到的是Y染色体,那么孩子的染色体类型就是46,XY, 在胚胎第8周就可以出现睾丸发育。由此可见,染色体Y决定男性性别,具有Y染色体的人就发育成男性,不具有Y染色的就发育成女性。事实上,孩子从父亲那儿得到X或者Y染色体的机会是均等的,所以发育成男性和女性的机会也是一样的。这种均等分配的原则,使得群体中男女性人数保持均等的状态。

在揭示了遗传分子基础的今天;遗传与变易的研究已进入了对遗传的物质基础及遗传物质的复制、重组、变异、遗传信息的传递和表达等各个方面。

图片 1

为什么有了睾丸,胎儿就朝男性发育,而没有睾丸,胎儿就朝女性发育呢?主要是因为睾丸能够分泌雄激素。在胎儿发育8周之前,胎儿体内就预先埋置了2套内生殖器。这2套内生殖器分别叫做“中肾管”和“副中肾管”。其中,前者可以发育成、子宫和部分阴道组织,而后者可以发育成附睾、前列腺和输精管组织。睾丸除了能够分泌雄激素,促进副中肾管发育以外,还会分泌抗苗氏管因子,抑制中肾管的发育。通过这种方式,胎儿选择了“男性的生殖系统”,放弃了“女性生殖系统”。简单的讲,人天生具备有2套生殖系统,染色体核型为46,XY的胎儿通过形成睾丸,选择了其中的一套。而染色体核型为46,XX的胎儿,则选择了另一套。有一点需要指出,2套生殖系统的选择,只和雄激素有关,和雌激素没有关系。有雄激素就走男性化道路,没有雄激素,只能走女性化道路。走女性化道路不需要雌激素的参与。

几乎所有生物遗传的物质基础都是脱氧核糖核酸,只有一小部分病毒是以核搪核酸作为遗传物质的。

棘腹蛙染色体正常核型及易位核型的涂染结果

胎儿的外生殖器和尿道,在妊娠的第8周开始形成,在第15周完全形成。

遗传的染色体(chromosome)基础

图片 2

人类从双亲处继承的全部遗传物质是存在于卵子和精子这二个细胞的细胞核内。在细胞有丝分裂中期,染色体的形态最为恒定,分化最清晰,便于观察和比较,因而是研究中通用的染色体分析时相。

易位发生在X染色体上的后代核型理论推导图

1.常染色体与性染色体 染色体由核酸和蛋白质构成,具有储存和传递遗传信息。控制分化和发育的作用。正常人体细胞中共有46条染色体,构成23对。每一对染色体由两条形态功能相同,分别来源于父方和母方的染色体构成。这对染色体称为同源染色体(homologous chromosome)。每一条染色体都是由两条染色单位连于一个着丝粒所构成。着丝粒可将染色体分成两个臂,较长的:为长臂,较短的称为短臂。在23对染色体中,1~22号染色体为男女所共有,称为常染色体;另2条为性染色体,X和Y。男性为46,XY;女性为46,XX。人的性别是在受精时由精子和卵子中所含的性染色体所决定的。

2.核型(Karyotype)与染色体显带

核型:由体细胞中全套染色体按形态特征和大小顺序排列构成,并依次配对、分组,构成该个体的核型或染色体细型。

染色体核型的表达,应将染色体总数,性染色体组成以及异常染色体情况一一加以描述。

一般正常核型的表达如下:

46,XX——即表示染色体总数为46条,性染色体为XX,是正常女性核型。

异常染色外该型表达分为结构异常和数目异常,分别表达如下:

47,XY,十21——这是“21—三体综合症患儿的核型表达。说明该个体为男性,细胞含47条染色休,第21号染色体多了一条。属于常染色体数目异常。

46,XY,5P-—表示该男性患儿第5号染色体短臂缺失,即临床上所谓的“猫叫综合征”。属于染色体的结构异常。

染色体的显带 当染色体经一定程序处理并用特定的染料染色后,在显微镜下可显示出深浅不同的条纹,或在荧光显微镜下看到不同强度的荧光节段,这就是染色体带。不同的染色体具有不同形态的带,称为“带型”,将染色体带显示的过程称为染色体显带。在一个人类中期细胞的染色体组上约可看到320条带。至20世纪70年代中期,自染色体高分辨显带技术问世后,研究者可以在细胞的前中期染色体上显示出1256条带;在早前期染色体上可显示出3000—10000条带。从而使染色体的研究进入分子生物学水平。因为显带技术不仅解决了染色体的识别问题,还为深入研究染色体的异常初人类基因定位创造了条件。

遗传的分子基础

染色体中的化学组成主要是DNA和组蛋白。携带遗传信息的主要是DNA分子的一个特定片段——基因。基因是细胞内遗传信息的结构和功能单位,它能通过特定的表达方式控制和影响个体的发生和发育。

人体细胞内的DNA是由两条多核苷酸链结合而成的一条双螺旋分子结构,每个基因都是DNA多核苷酸链上的一个特定的区段。基因的复制是以DNA复制为基础。在细胞周期中,DNA双螺旋中的两条互补链间的氢键断裂,双螺旋解旋,然后在特异性酶的作用下,以每股链的碱基顺序为模板,吸收周围游离核苷酸,按碱基互补原则,合成新的互补链。当新旧两股链结合后就形成了与原来碱基顺序完全相同的两条DNA双螺旋,并具备完全相同的遗传信息,从而保证了亲子代间遗传的连续性。

由此可见,DNA分子中的碱基对的排列顺序蕴藏着与生命活动密切相关的各种蛋白质的氨基酸排列顺序的遗传信息。基因的基本功能一方面是通过半保留复制,将母细跑的遗传信息传递给子细胞,以保证个体的生长发育,并在繁衍的过程中保持遗传性状的相对稳定。另一方面是经过翻译、转录而控制蛋白质的合成,构成各种细胞、组织,形成各种酶,催化生命活动中的各种生化反应,从而影响了遗传性状的形成,使遗传信息得以表达。一旦DNA分子结构发生改变,它所控制的蛋白质中氨基酸顺序也发生了改变,这就是突变,也是异常性状和遗传病的由来。

遗传的基本规律

1.分离律(1awofsegregation)当生物形成生殖细胞时,成对的等位基因彼此分离,分别进入不同的生殖细胞的规律。

2.自由组合律(1awofindependentassortment)在生殖细胞形成过程中,不同的非等位基因,可以相互独立的分离,有均等的机会组合到7—个生殖细胞的规律性活动。

3.连铰律与交换律(1awoflinkageand.10wofcrossing—over)如果决定两种性状的基因位于同源染色体上时,那么在生殖细胞的减数分裂时,位于同一条染色体上的决定两种性状的基因,将连在一起随着这条染色体进入一个生殖细胞中。因此,它们不能自由组合,而是连锁在一起传递,这就叫做连锁。在同一条染色体上的所有基因一起构成连锁群,并作为一个单位进行传递的规律,即称为连锁律。此外,在生殖细胞发生的过程中,两个相对连锁基因之间,可以发生交换的现象,则为交换律。

二、变 异

遗传物质的稳定只是相对的,在一定的条件下会发生变异。遗传和变异是生命的特征;从生物进化的角度来看,变异是生物从低级发展到高级的条件,也是进化的基础。遗传与变异在一定条件下相互转化,即遗传性的改变表现为变异性、变异性的稳定和传代就是遗传性。

遗传物质的变化和由其所引起的表型的改变,称为突变(mLltation)。 基因突变

基因突变是指基因的核甙酸顺序或数目发生了改变。若仅为DNA分子中单个碱基的改变称为点突变(90intmutation)。基因突变可发生在个体发育的任何阶段,且可发生于体细胞与生殖细胞的任何分期。但由于生殖细胞对外界环境的敏感性较高,所以发生突变的机率也高,一旦发生可遗传给后代。如果突变是发生衣体纲胞中,一般不能直接遗传给下一代,但可引起突变个体某些体细胞发生遗传结构的改变,而成为某些病理变化的基础。

l。基因突变的机制基因突变的分子基础是DNA分子的改变引起蛋白质氨基酸的变化,从而使个体的性状也随之发生改变。根据突变发生原因的不同尚可分为自发突和诱发突变。自发突变是指在自然状态下,环境中所存在的某些致突变物所引起的突变;诱发突变则是人为的,用能引起DNA改变的一些外界的物理和化学因素诱发的突变。 基因突变引起个体某些性状改变的机制是它可引起酶分子的缺陷,然后进一步影响新陈代谢及细胞结构和功能。如某一基因发生突变,就会使相应的酶合成障碍,而酶是物质代谢中必不可少的催化剂,一旦缺乏,则导致代谢紊乱,从而产生先天性代谢缺陷。

本文由云顶集团网站发布于新闻中心,转载请注明出处:男女之别是如何形成的,中科院成都生物所发现

关键词:

最火资讯